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I. INTRODUCTION 

 

An operator 𝒯1 ∈ 𝐿(𝑋)  is said to be a Drazin invertible if there exists a positive integer k and an operator 

𝑆1 ∈ 𝐿(𝑋)   such that 𝒯1
𝑘𝑆1𝒯1 = 𝒯1

𝑘, 𝑆1𝒯1𝑆1 = 𝑆1 𝑎𝑛𝑑 𝒯1𝑆1 = 𝑆1𝒯1The Drazin spectrum is defined by σD(T) 

= {λ ∈ C : T − λI is not Drazin invertible}. 

The Drazin invertible spectrum is define by 𝜎𝑑(𝒯1) = {𝜆 𝜖 𝐶: 𝒯1 − 𝜆𝐼 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑟𝑎𝑧𝑖𝑛 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟} 

The Drazin invertible operator is defined by an operator 𝒯1 ∈ 𝐿(𝑋) is said to be Drazin invertible if  𝒯1 is both 

left and Right Drazin invertible. 

It is well known that T is Drazin invertible if and only if T is of finite ascent and descent, which is also 

equivalent to the fact that T = R ⊕ N where R is invertible and N nilpotent (see [16, Corollary 2.2]). Clearly, 

𝒯1 is Drazin invertible if and only if 𝒯1
∗is Drazin invertible. A bounded linear operator 𝒯1 ∈ L(X) is said to 

have the single-valued extension property (SVEP, for short) at λ ∈ C if for every open neighborhood ∪𝜆 𝑜𝑓 𝜆, 

the constant function f ≡ 0 is the only analytic solution of the equation 

 (𝒯1 − 𝜇)𝑓(𝜇) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜇 𝜖 ∪𝜆  

We use 𝑆1(𝒯1) to denote the open set where 𝒯1 fails to have the SVEP and we say that 𝒯1 has the SVEP if 

𝑆1(𝒯1)is the empty set, [12]. It is easy to see that (𝒯1) has the SVEP at every point λ ∈ iso σ(T), where iso 

σ(T) denotes the set of all isolated points of σ(T). Note that (see [12])  

 𝑆1(𝒯1) ⊆ 𝜎𝑝(𝒯1) 𝑎𝑛𝑑 𝜎(𝒯1) = 𝑆1(𝒯1) ∪ 𝜎𝑠(𝒯1) 

Also, it follows from [15] if T is of finite ascent and descent then 𝒯1 and have the SVEP. Hence 𝑆1(𝒯1) ∪

𝑆1(𝒯1
∗) ⊆ 𝜎𝑑(𝒯1) 
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For 𝒯1∈ L(X), 𝒯2∈ L (Y) and C ∈ L (Y, X) we denote by 𝑀𝐶 the operator defined on X ⊕ Y 

 by 𝑀𝐶 = [
𝒯1 0
𝒯3 𝒯2

] 

In [11] it is proved that 𝜎(𝑀𝐶 ) ∪ [𝑆1(𝒯1
∗) ∩ 𝑆1(𝒯2)] = 𝜎(𝒯1) ∪ 𝜎(𝒯2) . Numerus mathematicians were 

interested by the defect set [𝜎∗(𝒯1) ∪ 𝜎∗(𝒯2)]\ 𝜎∗(𝑀𝐶 ) 

 See for instance [11, 13, 14] for the spectrum and the essential spectrum,[19] for the Weyl spectrum, [10] for 

the Browder spectrum and [9, 10] for the essential approximate point spectrum and the Browder essential 

approximate point spectrum. See also the references therein. For the Drazin spectrum, Campbell and Meyer 

[7] were the first studied the Drazin invertibility of 2 × 2 lower triangular operator matrices 𝑀𝐶  where 𝒯1, 𝒯2 

and 𝒯3 are n × n complex matrices. They proved that 𝜎𝑑(𝑀𝐶 ) ⊆ 𝜎𝑑(𝒯1) ∪ 𝜎𝑑(𝒯2) 

D. S. Djordjevi´c and P. S. Stanimirovi´c generalized the inclusion (1.3) to arbitrary Banach spaces [8]. 

Inclusion (1.3) may be strict.  

The generalized inverse (for short G-Inverse) and generalized Drazin inverse (for short GD-Inverse). Presume  

𝑇𝑛 is a given lower triangular block matrix and 𝑋𝑛 is an arbitrary upper triangular block matrix.     The 

generalized Drazin inverse of a 2 × 2 block operator matrix  𝒯 = (
𝒯1 0
𝒯2 𝒯3

). Let X and K be  

 separable, infinite dimensional, complex Banach spaces. Denote by 𝐵(𝑋, 𝐾) the set of all bounded linear 

operators from X into K. For an operator 𝒯 ∈ 𝐵(𝑋, 𝐾), 𝑅(𝐴), 𝑁(𝐴) denote the range, the null space and the 

adjoint of A, respectively. For 𝒯 ∈ 𝐵(𝑋, 𝐾), if there exists 𝒯+ ∈ 𝐵(𝑋, 𝐾)  satisfying the following four 

operator equation, 𝒯𝒯+𝒯 = 𝒯, 𝒯+𝒯𝒯+ = 𝒯+, 𝒯𝒯+ = (𝒯𝒯+)∗, 𝒯+𝒯 = (𝒯+𝒯)∗, then 𝒯+ is called the G-

Inverse of T. It is well known that has the G-inverse if and only if R (𝒯) is closed and the G-inverse of 𝒯 is 

unique (see [16, 20, 24]).  

 

1. Main results and its proof 

 

Theorem 1.1 

 For 𝒯1 ∈ 𝐿(𝑋), 𝒯2 ∈ 𝐿(𝑌), and 𝒯3 ∈ L (Y, X) we have  

𝜎𝑑(𝑀𝐶 ) ∪ [𝑆1(𝒯1
∗) ∩ 𝑆1(𝒯2)] = 𝜎𝑑(𝒯1) ∪ 𝜎𝑑(𝒯2) 

  

 Proof  

Since the inclusion 𝜎𝑑(𝑀𝐶 ) ∪ [𝑆1(𝒯1
∗) ∩ 𝑆1(𝒯2)] ⊆ 𝜎𝑑(𝒯1) ∪ 𝜎𝑑(𝒯2) 

 always holds, it suffices to prove the reverse inclusion. Let 𝜆 ∈ 𝜎𝑑(𝒯1) ∪ 𝜎𝑑(𝒯2)/𝜎𝑑(𝑀𝐶 ).Without loss of 

generality, we can assume that 𝜆 = 0. Then  𝑀𝐶 is of finite ascent and descent. Hence from [9, Lemma 2.1] 

we have A is of finite ascent and B is of finite descent. Also, by duality 𝒯1
∗ is of finite descent and 𝒯2

∗is of 

finite ascent. For the sake of contradiction assume that  

0 ∉  𝑆1(𝒯1
∗) ∩ 𝑆1(𝒯2). 

Case 1. 0 ∉  𝑆1(𝒯1
∗) Since 𝑀𝐶  is Drazin invertible, then there exists ∈ > 0 such that for every 𝜆, 

 0 < |𝜆| < ∈, 𝑀𝐶 − 𝜆 is invertible. Hence 𝒯1 − 𝜆 is right invertible. Thus 0 ∉  𝑎𝑐𝑐𝜎𝑎𝑝(𝒯1) = 𝑎𝑐𝑐𝜎𝑠(𝒯1
∗). 0 ∉

 𝜎(𝒯1
∗) then 𝒯1

∗ is Drazin invertible and so 𝒯1 is. Now if 0 ∈  𝜎(𝒯1
∗), since 𝜎(𝒯1

∗) = 𝑆1(𝒯1
∗) ∪ 𝜎𝑠(𝒯1

∗)  Then 

0 is an isolated point of 𝜎(𝒯1
∗). Now 𝒯1

∗ is of finite decent and 0 ∈ 𝑖𝑠𝑜𝜎(𝒯1
∗). Hence it follows from [18, 

Theorem 10.5] 

𝒯1
∗ is Drazin invertible. Thus  𝒯1 is Drazin invertible. Since  𝑀𝐶  is Drazin invertible it follows from [21, 

lemma 2.7] that 𝒯2 is also Drazin invertible which contradiction our assumption. 

 

Case 2. 0 ∉  𝑆1(𝒯2
∗), the proof goes similarly. 
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Theorem 1.2 

Let 𝒯1  ∈ 𝐵(𝑋), 𝒯2  ∈ 𝐵(𝐾), 𝒯3  ∈ 𝐵(𝐾, 𝑋) and 𝒯2 be invertible. Then 2 by 2 block operator valued matrix 

𝒯 = [
𝒯1 0
𝒯2 𝒯3

] is G invertible if and only if R (𝒯1) is closed and 

[
𝒯1 0
𝒯2 𝒯3

] =  [
𝒯1

+ − 𝒯1
+𝒯2∆𝒯2

∗(𝐼 − 𝒯1𝒯2
+) −𝒯1

−1𝒯2∆𝒯3
∗

∆𝒯2
∗(𝐼 − 𝒯1𝒯1

+) ∆𝒯3
∗ ] 

Proof 

Since [
𝒯1

∗ 𝒯2
∗

0 𝒯3
∗   ] [

𝐼  𝒯2
∗(  𝒯1

∗𝒯3)−1

0 −(𝒯3
∗)−1 ] =  [

𝒯1
∗ 0

0 𝐼
] 

R (𝒯  ∗)is closed if and only if R(𝒯1
∗). This shows that  𝒯 is invertible if and only if R(𝒯) is closed. 

In this case 𝒯  has the form 

[
𝒯1 0
𝒯2 𝒯3

] = [
0 0 0
0 𝒯11 0

𝒯22 𝒯21 𝒯3

] [
𝑁(𝒯1)

𝑅(𝒯1
∗)

𝐾

] → [
𝑁(𝒯1

∗)

𝑅(𝒯1)
𝐾

] 

 

Where 𝒯11 as an operator from R(𝒯1
∗)  on to R ( 𝒯) is invertible. Now N =[

0
𝒯22

]  ,  

M =[
𝒯11 0
𝒯21 𝒯3

] 

and   ∆=  (𝒯2
∗𝒯2 + 𝒯3

∗(𝐼 − 𝒯1𝒯1
∗)𝒯3)−1 

          =(𝒯2
∗𝒯2 + 𝒯3

∗𝒯3)−1 

It is easy to check that 

[
𝒯1 0
𝒯2 𝒯3

]
+

= [
0 𝑁
0 𝑀

]
∗

[[
0 𝑁
0 𝑀

] [
0 𝑁
0 𝑀

]
∗

]

−1

 

                   =  [
0 (𝑁∗𝑁 + 𝑀∗𝑀)−1𝑁∗

0 (𝑁∗𝑁 + 𝑀∗𝑀)−1𝑀∗] 

              =   [

0 0 0
−𝒯11

∗ 𝒯21∆ 𝒯22
∗ 𝒯11

−1 0

∆𝒯22
∗ −𝒯1

−1𝒯21∆𝒯3 ∆𝒯3
∗
] 

           =      [
𝒯1

−1 − 𝒯1
∗𝒯2∆𝒯2

∗(𝐼 − 𝒯1𝒯2
+) −𝒯1

−1𝒯2∆𝒯3
∗

∆𝒯2
∗(𝐼 − 𝒯1𝒯1

+) ∆𝒯3
∗ ] 

 

Remark 

In Theorem 1, if R (𝒯2) is closed, we can show that 𝒯 is G-invertible if and only if 

 𝑅((𝐼 − 𝒯1𝒯1
+)𝒯3(𝐼 − 𝒯2

+𝒯2) is closed in a similar way. In this case, 𝒯+ has a very complicated 

representation. But we can show that 𝒯{1} has the form as  

[
𝒯1 𝒯3

0 𝒯2
]

{1}

= [         
𝒯1

+ − 𝒯1
+𝒯3𝒯31

+  −𝒯1
+𝒯3𝒯2

+

𝒯31
+ 𝒯2

+ − 𝒯31
+𝒯3𝒯2

+], 

Were 𝒯31 = ((𝐼 − 𝒯1𝒯1
+)𝒯3(𝐼 − 𝒯2

+𝒯2)).  

In addition, if 𝒯1𝒯1
+𝒯3(𝐼 − 𝒯2

+𝒯2 − 𝒯31
+𝒯31) = 0 and (𝐼 − 𝒯2

+𝒯2 − 𝒯31
+𝒯31)𝒯3𝒯2𝒯2

+ = 0, a directly 

calculation can show that,  

[
𝒯1 𝒯3

0 𝒯2
]

+

= [         
𝒯1

+ − 𝒯1
+𝒯3𝒯31

+  −𝒯1
+𝒯3𝒯2

+ + 𝒯1
+𝒯3𝒯31

+𝒯3𝒯2
+

𝒯31
+ 𝒯2

+ − 𝒯31
+𝒯3𝒯2

+ ]. 

(2) If we assume as well that 𝑅(𝒯3) ⊂ 𝑅(𝒯1) and 𝑅(𝒯3
+) ⊂ 𝑅(𝒯2

+), then 𝒯 satisfies remark (1), and 𝒯31 =
(𝐼 − 𝒯1𝒯1

+)𝒯3(𝐼 − 𝒯2
+𝒯2) = 0.Then we have 
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