JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

G-Inverse of Lower Triangular Block Operator Matrix

¹USHA S, and ²SENTHILKUMAR D ¹ASSISTANT PROFESSOR, ²PROFESSOR, DEPARTMENT OF MATHEMATICS, 1 SRI SHAKTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, COIMBATORE, INDIA

Abstract: Inside this paper, we probe the depictions of Drazin spectrum $\sigma_d(M_C)$ and Generalized inverse and generalized Drazin inverse of lower triangular operator matrix on Banach space.

Keywords: Operator Matrices, Drazin spectrum, single-valued extension property, Generalized inverse, Drazin inverse.

I. Introduction

An operator $\mathcal{T}_1 \in L(X)$ is said to be a Drazin invertible if there exists a positive integer k and an operator $S_1 \in L(X)$ such that $\mathcal{T}_1^k S_1 \mathcal{T}_1 = \mathcal{T}_1^k$, $S_1 \mathcal{T}_1 S_1 = S_1$ and $\mathcal{T}_1 S_1 = S_1 \mathcal{T}_1$ The Drazin spectrum is defined by $\sigma D(T)$ = $\{\lambda \in C : T - \lambda I \text{ is not Drazin invertible}\}.$

The Drazin invertible spectrum is define by $\sigma_d(\mathcal{T}_1) = \{\lambda \in \mathcal{C}: \mathcal{T}_1 - \lambda I \text{ is not Drazin invertible operator}\}$ The Drazin invertible operator is defined by an operator $\mathcal{T}_1 \in L(X)$ is said to be Drazin invertible if \mathcal{T}_1 is both left and Right Drazin invertible.

It is well known that T is Drazin invertible if and only if T is of finite ascent and descent, which is also equivalent to the fact that $T = R \oplus N$ where R is invertible and N nilpotent (see [16, Corollary 2.2]). Clearly, \mathcal{T}_1 is Drazin invertible if and only if \mathcal{T}_1^* is Drazin invertible. A bounded linear operator $\mathcal{T}_1 \in L(X)$ is said to have the single-valued extension property (SVEP, for short) at $\lambda \in C$ if for every open neighborhood \cup_{λ} of λ , the constant function $f \equiv 0$ is the only analytic solution of the equation

$$(\mathcal{T}_1 - \mu)f(\mu) = 0$$
 for all $\mu \in \cup_{\lambda}$

We use $S_1(\mathcal{T}_1)$ to denote the open set where \mathcal{T}_1 fails to have the SVEP and we say that \mathcal{T}_1 has the SVEP if $S_1(T_1)$ is the empty set, [12]. It is easy to see that (T_1) has the SVEP at every point $\lambda \in \text{iso } \sigma(T)$, where iso $\sigma(T)$ denotes the set of all isolated points of $\sigma(T)$. Note that (see [12])

$$S_1(T_1) \subseteq \sigma_p(T_1)$$
 and $\sigma(T_1) = S_1(T_1) \cup \sigma_s(T_1)$

Also, it follows from [15] if T is of finite ascent and descent then \mathcal{T}_1 and have the SVEP. Hence $\mathcal{S}_1(\mathcal{T}_1) \cup$ $S_1(\mathcal{T}_1^*) \subseteq \sigma_d(\mathcal{T}_1)$

For $\mathcal{T}_1 \in L(X)$, $\mathcal{T}_2 \in L(Y)$ and $C \in L(Y, X)$ we denote by M_C the operator defined on $X \oplus Y$

by
$$M_C = \begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_3 & \mathcal{T}_2 \end{bmatrix}$$

In [11] it is proved that $\sigma(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] = \sigma(\mathcal{T}_1) \cup \sigma(\mathcal{T}_2)$. Numerus mathematicians were interested by the defect set $[\sigma_*(T_1) \cup \sigma_*(T_2)] \setminus \sigma_*(M_C)$

See for instance [11, 13, 14] for the spectrum and the essential spectrum, [19] for the Weyl spectrum, [10] for the Browder spectrum and [9, 10] for the essential approximate point spectrum and the Browder essential approximate point spectrum. See also the references therein. For the Drazin spectrum, Campbell and Meyer [7] were the first studied the Drazin invertibility of 2×2 lower triangular operator matrices M_C where $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 are n × n complex matrices. They proved that $\sigma_d(M_C) \subseteq \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$

D. S. Djordjevi'c and P. S. Stanimirovi'c generalized the inclusion (1.3) to arbitrary Banach spaces [8]. Inclusion (1.3) may be strict.

The generalized inverse (for short G-Inverse) and generalized Drazin inverse (for short GD-Inverse). Presume T_n is a given lower triangular block matrix and X_n is an arbitrary upper triangular block matrix. generalized Drazin inverse of a 2×2 block operator matrix $\mathcal{T} = \begin{pmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{pmatrix}$. Let X and K be

separable, infinite dimensional, complex Banach spaces. Denote by B(X,K) the set of all bounded linear operators from X into K. For an operator $\mathcal{T} \in B(X,K)$, R(A), N(A) denote the range, the null space and the adjoint of A, respectively. For $T \in B(X,K)$, if there exists $T^+ \in B(X,K)$ satisfying the following four operator equation, $TT^+T = T$, $T^+TT^+ = T^+$, $TT^+ = (TT^+)^*$, $T^+T = (T^+T)^*$, then T^+ is called the G-Inverse of T. It is well known that has the G-inverse if and only if R (T) is closed and the G-inverse of T is unique (see [16, 20, 24]).

1. Main results and its proof

Theorem 1.1

For
$$\mathcal{T}_1 \in L(X)$$
, $\mathcal{T}_2 \in L(Y)$, and $\mathcal{T}_3 \in L(Y, X)$ we have
$$\sigma_d(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] = \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$$

Proof

Since the inclusion $\sigma_d(M_C) \cup [S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2)] \subseteq \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)$

always holds, it suffices to prove the reverse inclusion. Let $\lambda \in \sigma_d(\mathcal{T}_1) \cup \sigma_d(\mathcal{T}_2)/\sigma_d(M_C)$. Without loss of generality, we can assume that $\lambda = 0$. Then M_C is of finite ascent and descent. Hence from [9, Lemma 2.1] we have A is of finite ascent and B is of finite descent. Also, by duality \mathcal{T}_1^* is of finite descent and \mathcal{T}_2^* is of finite ascent. For the sake of contradiction assume that

 $0 \notin S_1(\mathcal{T}_1^*) \cap S_1(\mathcal{T}_2).$

Case 1. $0 \notin S_1(T_1^*)$ Since M_C is Drazin invertible, then there exists $\epsilon > 0$ such that for every λ ,

 $0 < |\lambda| < \in$, $M_C - \lambda$ is invertible. Hence $\mathcal{T}_1 - \lambda$ is right invertible. Thus $0 \notin acc\sigma_{ap}(\mathcal{T}_1) = acc\sigma_s(\mathcal{T}_1^*)$. $0 \notin$ $\sigma(\mathcal{T}_1^*)$ then \mathcal{T}_1^* is Drazin invertible and so \mathcal{T}_1 is. Now if $0 \in \sigma(\mathcal{T}_1^*)$, since $\sigma(\mathcal{T}_1^*) = S_1(\mathcal{T}_1^*) \cup \sigma_s(\mathcal{T}_1^*)$ Then 0 is an isolated point of $\sigma(T_1^*)$. Now T_1^* is of finite decent and $0 \in iso\sigma(T_1^*)$. Hence it follows from [18, Theorem 10.5]

 \mathcal{T}_1^* is Drazin invertible. Thus \mathcal{T}_1 is Drazin invertible. Since M_C is Drazin invertible it follows from [21, lemma 2.7] that T_2 is also Drazin invertible which contradiction our assumption.

Case 2. $0 \notin S_1(\mathcal{T}_2^*)$, the proof goes similarly.

Theorem 1.2

Let $\mathcal{T}_1 \in B(X), \mathcal{T}_2 \in B(K), \mathcal{T}_3 \in B(K, X)$ and \mathcal{T}_2 be invertible. Then 2 by 2 block operator valued matrix $\mathcal{T} = \begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{bmatrix} \text{ is G invertible if and only if R } (\mathcal{T}_1) \text{ is closed and}$ $\begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{bmatrix} = \begin{bmatrix} \mathcal{T}_1^+ - \mathcal{T}_1^+ \mathcal{T}_2 \Delta \mathcal{T}_2^* (I - \mathcal{T}_1 \mathcal{T}_2^+) & -\mathcal{T}_1^{-1} \mathcal{T}_2 \Delta \mathcal{T}_3^* \\ \Delta \mathcal{T}_2^* (I - \mathcal{T}_1 \mathcal{T}_1^+) & \Delta \mathcal{T}_3^* \end{bmatrix}$

$$\begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{bmatrix} = \begin{bmatrix} \mathcal{T}_1^+ - \mathcal{T}_1^+ \mathcal{T}_2 \Delta \mathcal{T}_2^* (I - \mathcal{T}_1 \mathcal{T}_2^+) & -\mathcal{T}_1^{-1} \mathcal{T}_2 \Delta \mathcal{T}_3^* \\ \Delta \mathcal{T}_2^* (I - \mathcal{T}_1 \mathcal{T}_1^+) & \Delta \mathcal{T}_3^* \end{bmatrix}$$

Proof

Since
$$\begin{bmatrix} \mathcal{T}_1^* & \mathcal{T}_2^* \\ 0 & \mathcal{T}_3^* \end{bmatrix} \begin{bmatrix} I & \mathcal{T}_2^* (\ \mathcal{T}_1^* \mathcal{T}_3)^{-1} \\ 0 & -(\mathcal{T}_3^*)^{-1} \end{bmatrix} = \begin{bmatrix} \mathcal{T}_1^* & 0 \\ 0 & I \end{bmatrix}$$

R (\mathcal{T}^*) is closed if and only if R(\mathcal{T}_1^*). This shows that \mathcal{T} is invertible if and only if R(\mathcal{T}) is closed. In this case \mathcal{T} has the form

$$\begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathcal{T}_{11} & 0 \\ \mathcal{T}_{22} & \mathcal{T}_{21} & \mathcal{T}_3 \end{bmatrix} \begin{bmatrix} N(\mathcal{T}_1) \\ R(\mathcal{T}_1^*) \\ K \end{bmatrix} \rightarrow \begin{bmatrix} N(\mathcal{T}_1^*) \\ R(\mathcal{T}_1) \\ K \end{bmatrix}$$

Where \mathcal{T}_{11} as an operator from $R(\mathcal{T}_1^*)$ on to $R(\mathcal{T})$ is invertible. Now $N = \begin{bmatrix} 0 \\ \mathcal{T}_{22} \end{bmatrix}$,

$$M = \begin{bmatrix} \mathcal{T}_{11} & 0 \\ \mathcal{T}_{21} & \mathcal{T}_{3} \end{bmatrix}$$
and $\Delta = (\mathcal{T}_{2}^{*}\mathcal{T}_{2} + \mathcal{T}_{3}^{*}(I - \mathcal{T}_{1}\mathcal{T}_{1}^{*})\mathcal{T}_{3})^{-1}$

$$= (\mathcal{T}_{2}^{*}\mathcal{T}_{2} + \mathcal{T}_{3}^{*}\mathcal{T}_{3})^{-1}$$
It is easy to check that

It is easy to check that

It is easy to check that
$$\begin{bmatrix} \mathcal{T}_1 & 0 \\ \mathcal{T}_2 & \mathcal{T}_3 \end{bmatrix}^+ = \begin{bmatrix} 0 & N \\ 0 & M \end{bmatrix}^* \begin{bmatrix} 0 & N \\ 0 & M \end{bmatrix} \begin{bmatrix} 0 & N \\ 0 & M \end{bmatrix}^* \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 0 & (N^*N + M^*M)^{-1}N^* \\ 0 & (N^*N + M^*M)^{-1}M^* \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ -\mathcal{T}_{11}^*\mathcal{T}_{21}\Delta\mathcal{T}_{22}^* & \mathcal{T}_{11}^{-1} & 0 \\ \Delta\mathcal{T}_{22}^* & -\mathcal{T}_{1}^{-1}\mathcal{T}_{21}\Delta\mathcal{T}_{3} & \Delta\mathcal{T}_{3}^* \end{bmatrix}$$

$$= \begin{bmatrix} \mathcal{T}_{1}^{-1} - \mathcal{T}_{1}^*\mathcal{T}_{2}\Delta\mathcal{T}_{2}^*(I - \mathcal{T}_{1}\mathcal{T}_{2}^+) & -\mathcal{T}_{1}^{-1}\mathcal{T}_{2}\Delta\mathcal{T}_{3}^* \\ \Delta\mathcal{T}_{2}^*(I - \mathcal{T}_{1}\mathcal{T}_{1}^+) & \Delta\mathcal{T}_{3}^* \end{bmatrix}$$

Remark

In Theorem 1, if R (\mathcal{T}_2) is closed, we can show that \mathcal{T} is G-invertible if and only if $R((I-T_1T_1^+)T_3(I-T_2^+T_2))$ is closed in a similar way. In this case, T^+ has a very complicated

representation. But we can show that
$$\mathcal{T}^{\{1\}}$$
 has the form as
$$\begin{bmatrix} \mathcal{T}_1 & \mathcal{T}_3 \\ 0 & \mathcal{T}_2 \end{bmatrix}^{\{1\}} = \begin{bmatrix} \mathcal{T}_1^+ - \mathcal{T}_1^+ \mathcal{T}_3 \mathcal{T}_{31}^+ & -\mathcal{T}_1^+ \mathcal{T}_3 \mathcal{T}_2^+ \\ \mathcal{T}_{31}^+ & \mathcal{T}_2^+ - \mathcal{T}_{31}^+ \mathcal{T}_3 \mathcal{T}_2^+ \end{bmatrix},$$
Were $\mathcal{T}_{31} = \left((I - \mathcal{T}_1 \mathcal{T}_1^+) \mathcal{T}_3 (I - \mathcal{T}_2^+ \mathcal{T}_2) \right)$.

In addition, if $T_1T_1^+T_3(I-T_2^+T_2-T_{31}^+T_{31})=0$ and $(I-T_2^+T_2-T_{31}^+T_{31})T_3T_2T_2^+=0$, a directly

calculation can show that,
$$\begin{bmatrix}
T_1 & T_3 \\
0 & T_2
\end{bmatrix}^+ = \begin{bmatrix}
T_1^+ - T_1^+ T_3 T_{31}^+ & -T_1^+ T_3 T_2^+ + T_1^+ T_3 T_{31}^+ T_3 T_2^+ \\
T_{31}^+ & T_2^+ - T_{31}^+ T_3 T_2^+
\end{bmatrix}.$$
(2) If we assume as well that $R(T_2) \subseteq R(T_1)$ and $R(T_2^+) \subseteq R(T_2^+)$, then

(2) If we assume as well that $R(\mathcal{T}_3) \subset R(\mathcal{T}_1)$ and $R(\mathcal{T}_3^+) \subset R(\mathcal{T}_2^+)$, then \mathcal{T} satisfies remark (1), and $\mathcal{T}_{31} = \mathcal{T}_{31}$ $(I - T_1T_1^+)T_3(I - T_2^+T_2) = 0$. Then we have

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004.
- [2] M. Berkani, Index of Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717–1723.
- [3] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291–302.

- [4] M. Berkani, N. Castro and S. V. Djordjevi'c, Single valued extension property and generalized Weyl's theorem, Mathematica Bohemica, Vol. 131 (1) (2006), 29–38.
- [5] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376.
- [6] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457–465.
- [7] S. L. Campbell and C. D. Meyer, Generalized Inverse of Linear Tansformation, Pitman, London, 1979.
- [8] D. S. Djordjevi'c and P. S. Stanimirovi'c, On the generalized Drazin inverse and generalized resolvent, Czech. Math. J. 51 (126) (2001), 617–634.
- [9] S. V. Djordjevi'c and H. Zguitti, Essential point spectra of operator matrices through local spectral theory. J. Math. Anal. Appl. 338 (2008), 285–291.
- [10] B. P. Duggal, Upper triangular operator matrices, SVEP and Browder, Weyl theorems, Integr. equ. oper. theory 63 (2009), 17–28.
- [11] H. Elbjaoui and E. H. Zerouali, Local spectral theory for 2×2 operator matrices, Int. J. Math and Mathematical Sciences 42 (2003), 2667–2672.
- [12] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69. on the Drazin inverse for upper triangular operator matrices 33.
- [13] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000), 119–123.
- [14] M. Houimdi and H. Zguitti, Propri'et'es spectrales locales d'une matrice carr'ee des op'erateurs, Acta Math. Vietnam. 25 (2000), 137–144.
- [15] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), 323–336.
- [16] D. C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- [17] S. L. Campbell and C. D. Meyer, "Generalized inverses of linear transformations, Pitman", New York, 1979.
- [18]. A.E. Taylor and D.C.Lay, Introduction to functional analysis, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1980.
- [19] N. Castro-Gonz a lez, J. J. Koliha, "New additive results for the g-Drazin inverse", Proc. Royal Soc. Edinburgh, 134A (2004), pp. 1085-1097.
- [20] Dragana S. Cvetkovi c -Ili c , Dragan S. Djordjevi c , Yimin Wei, "Additive results for the generalized Drazin inverse in a Banach algebra", Linear Algebra and its Applications, 418(2006), pp. 53-61.
- [21] S.Zhang, H.Zhong and Q.Jiang, Drazin spectrum of operator matrices on the Banach space, Linear Alg.Appl. 429 (2008), 2067-2075.
- [22] J. Ding and L. Huang, "On the perturbation of the least squares solutions in Hilbert spaces, Linear Algebra Appl., 212/213 (1994), PP. 487-500.
- [23] J. J. Koliha, "A generalized Drazin inverse", Glasgow Math. J., 38(1996), pp. 367-381.
- [24] Y. Wei and J. Ding, "Representations for Moore-Penrose inverse in Hilbert spaces", Applied Mathematics Letters, 14 (2001), pp. 599-604.